Impaired EDHF-mediated vasodilation and function of endothelial Ca-activated K channels in uremic rats.
نویسندگان
چکیده
BACKGROUND Chronic renal failure (CRF) is associated with increased cardiovascular morbidity, abnormal arterial tone, and endothelial dysfunction. Ca(2+)-activated K(+)-channels (K(Ca)) are important regulators of endothelial function by controlling endothelial hyperpolarization and thus endothelium-derived hyperpolarizing factor (EDHF)-mediated vasodilations. Here we tested the hypothesis whether an altered function of endothelial K(Ca) and diminished EDHF-mediated vasodilation contribute to the endothelial dysfunction in the rat remnant kidney model of chronic renal failure. METHODS Functional expression of endothelial K(Ca) currents and endothelium-dependent vasodilations in rat carotid arteries were assessed by using patch-clamp techniques, single-cell reverse transcription-polymerase chain reaction (RT-PCR), and a pressure myograph 8 weeks after either subtotal 5/6 nephrectomy in normotensive or hypertensive, or sham-operated rats. RESULTS Acetylcholine (ACh)-induced EDHF-mediated vasodilations were present in sham-operated rats, but almost absent in both normotensive 5/6 nephrectomy rats and hypertensive 5/6 nephrectomy rats. In experiments without blocking nitric oxide/prostacyclin synthesis, endothelium-dependent vasodilation to ACh was significantly reduced in both normotensive 5/6 nephrectomy rats and hypertensive 5/6 nephrectomy rats. In sham-operated rats, 1-ethyl-2-benzimidazolinone (1-EBIO), a selective opener of endothelial small and intermediate K(Ca), induced a substantial EDHF-mediated vasodilation, which was greatly reduced in hypertensive 5/6 nephrectomy rats and in normotensive 5/6 nephrectomy rats. In patch-clamp experiments, mean K(Ca) currents were significantly reduced in endothelial cells from hypertensive 5/6 nephrectomy rats and normotensive 5/6 nephrectomy rats when compared to sham-operated rats. Concordantly, single-cell reverse-transcription-polymerase chain reaction (RT-PCR) analysis revealed a greatly reduced frequency of endothelial cells expressing the K(Ca) genes, SKCa3 and IKCa1 in 5/6 nephrectomy rats compared to sham-operated rats. CONCLUSION Experimental CRF leads to a loss of EDHF-type vasodilation which was caused at least in part by an impaired functional expression of endothelial hyperpolarizing K(Ca). The loss of EDHF-type vasodilation may contribute to endothelial dysfunction and abnormal arterial tone in CRF.
منابع مشابه
Augmented EDHF signaling in rat uteroplacental vasculature during late pregnancy.
A successful pregnancy outcome relies on extensive maternal cardiovascular adaptation, including enhanced uteroplacental vasodilator mechanisms. The objective of the present study was to determine the contribution of the endothelium-derived hyperpolarizing factor (EDHF) signaling in pregnancy-enhanced uterine vasodilation, to define the role of Ca(2+)-activated K(+) channels in mediating EDHF e...
متن کاملGenetic deficit of SK3 and IK1 channels disrupts the endothelium-derived hyperpolarizing factor vasodilator pathway and causes hypertension.
BACKGROUND It has been proposed that activation of endothelial SK3 (K(Ca)2.3) and IK1 (K(Ca)3.1) K+ channels plays a role in the arteriolar dilation attributed to an endothelium-derived hyperpolarizing factor (EDHF). However, our understanding of the precise function of SK3 and IK1 in the EDHF dilator response and in blood pressure control remains incomplete. To clarify the roles of SK3 and IK1...
متن کاملEndothelial dysfunction in renal arcuate arteries of obese Zucker rats: The roles of nitric oxide, endothelium-derived hyperpolarizing factors, and calcium-activated K+ channels
The roles of nitric oxide (NO), endothelium-derived hyperpolarizing factors (EDHF), and calcium-activated K+ (KCa) channels in diabetes-associated endothelial dysfunction of small renal arteries are not clear. The present study investigated acetylcholine (ACh)-induced vasorelaxation of renal arcuate arteries from obese Zucker (OZ) rats at different diabetes durations, and the relative contribut...
متن کاملImpaired endothelium-derived hyperpolarizing factor-mediated dilations and increased blood pressure in mice deficient of the intermediate-conductance Ca2+-activated K+ channel.
The endothelium plays a key role in the control of vascular tone and alteration in endothelial cell function contributes to several cardiovascular disease states. Endothelium-dependent dilation is mediated by NO, prostacyclin, and an endothelium-derived hyperpolarizing factor (EDHF). EDHF signaling is thought to be initiated by activation of endothelial Ca(2+)-activated K(+) channels (K(Ca)), l...
متن کاملAge-associated endothelial dysfunction in rat mesenteric arteries: roles of calcium-activated K(+) channels (K(ca)).
Age-associated changes in large blood vessels were characterized by increased arterial wall thickness, luminal dilation and impaired endothelial function. But little is known about the effect of age on structural and functional changes in small resistance arteries. The mechanisms underlying age-associated endothelial dysfunction in rat mesenteric resistance arteries were investigated in the pre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Kidney international
دوره 67 6 شماره
صفحات -
تاریخ انتشار 2005